2022 |
Baquero-Arnal, Pau; Jorge, Javier; Giménez, Adrià; Iranzo-Sánchez, Javier; Pérez-González-de-Martos, Alejandro; Garcés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert; Civera, Jorge; Sanchis, Albert; Juan, Alfons MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge: Extension Journal Article Applied Sciences, 12 (2), pp. 804, 2022. Abstract | Links | BibTeX | Tags: Automatic Speech Recognition, Natural Language Processing, streaming @article{applsci1505192, title = {MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge: Extension}, author = {Pau Baquero-Arnal and Javier Jorge and Adrià Giménez and Javier Iranzo-Sánchez and Alejandro Pérez-González-de-Martos and Garcés Díaz-Munío, Gonçal V. and Joan Albert Silvestre-Cerdà and Jorge Civera and Albert Sanchis and Alfons Juan}, doi = {10.3390/app12020804}, year = {2022}, date = {2022-01-01}, journal = {Applied Sciences}, volume = {12}, number = {2}, pages = {804}, abstract = {This paper describes the automatic speech recognition (ASR) systems built by the MLLP-VRAIN research group of Universitat Politècnica de València for the Albayzín-RTVE 2020 Speech-to-Text Challenge, and includes an extension of the work consisting in building and evaluating equivalent systems under the closed data conditions from the 2018 challenge. The primary system (p-streaming_1500ms_nlt) was a hybrid ASR system using streaming one-pass decoding with a context window of 1.5 seconds. This system achieved 16.0% WER on the test-2020 set. We also submitted three contrastive systems. From these, we highlight the system c2-streaming_600ms_t which, following a similar configuration as the primary system with a smaller context window of 0.6 s, scored 16.9% WER points on the same test set, with a measured empirical latency of 0.81±0.09 seconds (mean±stdev). That is, we obtained state-of-the-art latencies for high-quality automatic live captioning with a small WER degradation of 6% relative. As an extension, the equivalent closed-condition systems obtained 23.3% WER and 23.5% WER respectively. When evaluated with an unconstrained language model, we obtained 19.9% WER and 20.4% WER; i.e., not far behind the top-performing systems with only 5% of the full acoustic data and with the extra ability of being streaming-capable. Indeed, all of these streaming systems could be put into production environments for automatic captioning of live media streams.}, keywords = {Automatic Speech Recognition, Natural Language Processing, streaming}, pubstate = {published}, tppubtype = {article} } This paper describes the automatic speech recognition (ASR) systems built by the MLLP-VRAIN research group of Universitat Politècnica de València for the Albayzín-RTVE 2020 Speech-to-Text Challenge, and includes an extension of the work consisting in building and evaluating equivalent systems under the closed data conditions from the 2018 challenge. The primary system (p-streaming_1500ms_nlt) was a hybrid ASR system using streaming one-pass decoding with a context window of 1.5 seconds. This system achieved 16.0% WER on the test-2020 set. We also submitted three contrastive systems. From these, we highlight the system c2-streaming_600ms_t which, following a similar configuration as the primary system with a smaller context window of 0.6 s, scored 16.9% WER points on the same test set, with a measured empirical latency of 0.81±0.09 seconds (mean±stdev). That is, we obtained state-of-the-art latencies for high-quality automatic live captioning with a small WER degradation of 6% relative. As an extension, the equivalent closed-condition systems obtained 23.3% WER and 23.5% WER respectively. When evaluated with an unconstrained language model, we obtained 19.9% WER and 20.4% WER; i.e., not far behind the top-performing systems with only 5% of the full acoustic data and with the extra ability of being streaming-capable. Indeed, all of these streaming systems could be put into production environments for automatic captioning of live media streams. |
2021 |
Jorge, Javier; Giménez, Adrià; Baquero-Arnal, Pau; Iranzo-Sánchez, Javier; Pérez-González-de-Martos, Alejandro; Garcés Díaz-Munío, Gonçal V; Silvestre-Cerdà, Joan Albert; Civera, Jorge; Sanchis, Albert; Juan, Alfons MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge Inproceedings Proc. of IberSPEECH 2021, pp. 118–122, Valladolid (Spain), 2021. Abstract | Links | BibTeX | Tags: Automatic Speech Recognition, Natural Language Processing, streaming @inproceedings{Jorge2021, title = {MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge}, author = {Javier Jorge and Adrià Giménez and Pau Baquero-Arnal and Javier Iranzo-Sánchez and Alejandro Pérez-González-de-Martos and Garcés Díaz-Munío, Gonçal V. and Joan Albert Silvestre-Cerdà and Jorge Civera and Albert Sanchis and Alfons Juan}, doi = {10.21437/IberSPEECH.2021-25}, year = {2021}, date = {2021-03-24}, booktitle = {Proc. of IberSPEECH 2021}, pages = {118--122}, address = {Valladolid (Spain)}, abstract = {1st place in IberSpeech-RTVE 2020 TV Speech-to-Text Challenge. [EN] This paper describes the automatic speech recognition (ASR) systems built by the MLLP-VRAIN research group of Universitat Politecnica de València for the Albayzin-RTVE 2020 Speech-to-Text Challenge. The primary system (p-streaming_1500ms_nlt) was a hybrid BLSTM-HMM ASR system using streaming one-pass decoding with a context window of 1.5 seconds and a linear combination of an n-gram, a LSTM, and a Transformer language model (LM). The acoustic model was trained on nearly 4,000 hours of speech data from different sources, using the MLLP's transLectures-UPV toolkit (TLK) and TensorFlow; whilst LMs were trained using SRILM (n-gram), CUED-RNNLM (LSTM) and Fairseq (Transformer), with up to 102G tokens. This system achieved 11.6% and 16.0% WER on the test-2018 and test-2020 sets, respectively. As it is streaming-enabled, it could be put into production environments for automatic captioning of live media streams, with a theoretical delay of 1.5 seconds. Along with the primary system, we also submitted three contrastive systems. From these, we highlight the system c2-streaming_600ms_t that, following the same configuration of the primary one, but using a smaller context window of 0.6 seconds and a Transformer LM, scored 12.3% and 16.9% WER points respectively on the same test sets, with a measured empirical latency of 0.81+-0.09 seconds (mean+-stdev). This is, we obtained state-of-the-art latencies for high-quality automatic live captioning with a small WER degradation of 6% relative. [CA] "Sistemes de reconeixement automàtic de la parla en castellà de MLLP-VRAIN per a la competició Albayzin-RTVE 2020 Speech-To-Text Challenge": En aquest article, es descriuen els sistemes de reconeixement automàtic de la parla (RAP) creats pel grup d'investigació MLLP-VRAIN de la Universitat Politecnica de València per a la competició Albayzin-RTVE 2020 Speech-to-Text Challenge. El sistema primari (p-streaming_1500ms_nlt) és un sistema de RAP híbrid BLSTM-HMM amb descodificació en temps real en una passada amb una finestra de context d'1,5 segons i una combinació lineal de models de llenguatge (ML) d'n-grames, LSTM i Transformer. El model acústic s'ha entrenat amb vora 4000 hores de parla transcrita de diferents fonts, usant el transLectures-UPV toolkit (TLK) del grup MLLP i TensorFlow; mentre que els ML s'han entrenat amb SRILM (n-grames), CUED-RNNLM (LSTM) i Fairseq (Transformer), amb 102G paraules (tokens). Aquest sistema ha obtingut 11,6 % i 16,0 % de WER en els conjunts test-2018 i test-2020, respectivament. És un sistema amb capacitat de temps real, que pot desplegar-se en producció per a subtitulació automàtica de fluxos audiovisuals en directe, amb un retard teòric d'1,5 segons. A banda del sistema primari, s'han presentat tres sistemes contrastius. D'aquests, destaquem el sistema c2-streaming_600ms_t que, amb la mateixa configuració que el sistema primari, però amb una finestra de context més reduïda de 0,6 segons i un ML Transformer, ha obtingut 12,3 % i 16,9 % de WER, respectivament, sobre els mateixos conjunts, amb una latència empírica mesurada de 0,81+-0,09 segons (mitjana+-desv). És a dir, s'han obtingut latències punteres per a subtitulació automàtica en directe d'alta qualitat amb una degradació del WER petita, del 6 % relatiu.}, keywords = {Automatic Speech Recognition, Natural Language Processing, streaming}, pubstate = {published}, tppubtype = {inproceedings} } 1st place in IberSpeech-RTVE 2020 TV Speech-to-Text Challenge. [EN] This paper describes the automatic speech recognition (ASR) systems built by the MLLP-VRAIN research group of Universitat Politecnica de València for the Albayzin-RTVE 2020 Speech-to-Text Challenge. The primary system (p-streaming_1500ms_nlt) was a hybrid BLSTM-HMM ASR system using streaming one-pass decoding with a context window of 1.5 seconds and a linear combination of an n-gram, a LSTM, and a Transformer language model (LM). The acoustic model was trained on nearly 4,000 hours of speech data from different sources, using the MLLP's transLectures-UPV toolkit (TLK) and TensorFlow; whilst LMs were trained using SRILM (n-gram), CUED-RNNLM (LSTM) and Fairseq (Transformer), with up to 102G tokens. This system achieved 11.6% and 16.0% WER on the test-2018 and test-2020 sets, respectively. As it is streaming-enabled, it could be put into production environments for automatic captioning of live media streams, with a theoretical delay of 1.5 seconds. Along with the primary system, we also submitted three contrastive systems. From these, we highlight the system c2-streaming_600ms_t that, following the same configuration of the primary one, but using a smaller context window of 0.6 seconds and a Transformer LM, scored 12.3% and 16.9% WER points respectively on the same test sets, with a measured empirical latency of 0.81+-0.09 seconds (mean+-stdev). This is, we obtained state-of-the-art latencies for high-quality automatic live captioning with a small WER degradation of 6% relative. [CA] "Sistemes de reconeixement automàtic de la parla en castellà de MLLP-VRAIN per a la competició Albayzin-RTVE 2020 Speech-To-Text Challenge": En aquest article, es descriuen els sistemes de reconeixement automàtic de la parla (RAP) creats pel grup d'investigació MLLP-VRAIN de la Universitat Politecnica de València per a la competició Albayzin-RTVE 2020 Speech-to-Text Challenge. El sistema primari (p-streaming_1500ms_nlt) és un sistema de RAP híbrid BLSTM-HMM amb descodificació en temps real en una passada amb una finestra de context d'1,5 segons i una combinació lineal de models de llenguatge (ML) d'n-grames, LSTM i Transformer. El model acústic s'ha entrenat amb vora 4000 hores de parla transcrita de diferents fonts, usant el transLectures-UPV toolkit (TLK) del grup MLLP i TensorFlow; mentre que els ML s'han entrenat amb SRILM (n-grames), CUED-RNNLM (LSTM) i Fairseq (Transformer), amb 102G paraules (tokens). Aquest sistema ha obtingut 11,6 % i 16,0 % de WER en els conjunts test-2018 i test-2020, respectivament. És un sistema amb capacitat de temps real, que pot desplegar-se en producció per a subtitulació automàtica de fluxos audiovisuals en directe, amb un retard teòric d'1,5 segons. A banda del sistema primari, s'han presentat tres sistemes contrastius. D'aquests, destaquem el sistema c2-streaming_600ms_t que, amb la mateixa configuració que el sistema primari, però amb una finestra de context més reduïda de 0,6 segons i un ML Transformer, ha obtingut 12,3 % i 16,9 % de WER, respectivament, sobre els mateixos conjunts, amb una latència empírica mesurada de 0,81+-0,09 segons (mitjana+-desv). És a dir, s'han obtingut latències punteres per a subtitulació automàtica en directe d'alta qualitat amb una degradació del WER petita, del 6 % relatiu. |
Iranzo-Sánchez, Javier; Jorge, Javier; Baquero-Arnal, Pau; Silvestre-Cerdà, Joan Albert ; Giménez, Adrià; Civera, Jorge; Sanchis, Albert; Juan, Alfons Streaming cascade-based speech translation leveraged by a direct segmentation model Journal Article Neural Networks, 142 , pp. 303–315, 2021. Abstract | Links | BibTeX | Tags: Automatic Speech Recognition, Cascade System, Deep Neural Networks, Hybrid System, Machine Translation, Segmentation Model, Speech Translation, streaming @article{Iranzo-Sánchez2021, title = {Streaming cascade-based speech translation leveraged by a direct segmentation model}, author = {Javier Iranzo-Sánchez and Javier Jorge and Pau Baquero-Arnal and Silvestre-Cerdà, Joan Albert and Adrià Giménez and Jorge Civera and Albert Sanchis and Alfons Juan}, doi = {10.1016/j.neunet.2021.05.013}, year = {2021}, date = {2021-01-01}, journal = {Neural Networks}, volume = {142}, pages = {303--315}, abstract = {The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. Nowadays, state-of-the-art ST systems are populated with deep neural networks that are conceived to work in an offline setup in which the audio input to be translated is fully available in advance. However, a streaming setup defines a completely different picture, in which an unbounded audio input gradually becomes available and at the same time the translation needs to be generated under real-time constraints. In this work, we present a state-of-the-art streaming ST system in which neural-based models integrated in the ASR and MT components are carefully adapted in terms of their training and decoding procedures in order to run under a streaming setup. In addition, a direct segmentation model that adapts the continuous ASR output to the capacity of simultaneous MT systems trained at the sentence level is introduced to guarantee low latency while preserving the translation quality of the complete ST system. The resulting ST system is thoroughly evaluated on the real-life streaming Europarl-ST benchmark to gauge the trade-off between quality and latency for each component individually as well as for the complete ST system.}, keywords = {Automatic Speech Recognition, Cascade System, Deep Neural Networks, Hybrid System, Machine Translation, Segmentation Model, Speech Translation, streaming}, pubstate = {published}, tppubtype = {article} } The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. Nowadays, state-of-the-art ST systems are populated with deep neural networks that are conceived to work in an offline setup in which the audio input to be translated is fully available in advance. However, a streaming setup defines a completely different picture, in which an unbounded audio input gradually becomes available and at the same time the translation needs to be generated under real-time constraints. In this work, we present a state-of-the-art streaming ST system in which neural-based models integrated in the ASR and MT components are carefully adapted in terms of their training and decoding procedures in order to run under a streaming setup. In addition, a direct segmentation model that adapts the continuous ASR output to the capacity of simultaneous MT systems trained at the sentence level is introduced to guarantee low latency while preserving the translation quality of the complete ST system. The resulting ST system is thoroughly evaluated on the real-life streaming Europarl-ST benchmark to gauge the trade-off between quality and latency for each component individually as well as for the complete ST system. |
2020 |
Baquero-Arnal, Pau ; Jorge, Javier ; Giménez, Adrià ; Silvestre-Cerdà, Joan Albert ; Iranzo-Sánchez, Javier ; Sanchis, Albert ; Civera, Jorge ; Juan, Alfons Improved Hybrid Streaming ASR with Transformer Language Models Inproceedings Proc. of 21st Annual Conf. of the Intl. Speech Communication Association (InterSpeech 2020), pp. 2127–2131, Shanghai (China), 2020. Abstract | Links | BibTeX | Tags: hybrid ASR, language models, streaming, Transformer @inproceedings{Baquero-Arnal2020, title = {Improved Hybrid Streaming ASR with Transformer Language Models}, author = {Baquero-Arnal, Pau and Jorge, Javier and Giménez, Adrià and Silvestre-Cerdà, Joan Albert and Iranzo-Sánchez, Javier and Sanchis, Albert and Civera, Jorge and Juan, Alfons}, url = {http://dx.doi.org/10.21437/Interspeech.2020-2770}, year = {2020}, date = {2020-01-01}, booktitle = {Proc. of 21st Annual Conf. of the Intl. Speech Communication Association (InterSpeech 2020)}, pages = {2127--2131}, address = {Shanghai (China)}, abstract = {Streaming ASR is gaining momentum due to its wide applicability, though it is still unclear how best to come close to the accuracy of state-of-the-art off-line ASR systems when the output must come within a short delay after the incoming audio stream. Following our previous work on streaming one-pass decoding with hybrid ASR systems and LSTM language models, in this work we report further improvements by replacing LSTMs with Transformer models. First, two key ideas are discussed so as to run these models fast during inference. Then, empirical results on LibriSpeech and TED-LIUM are provided showing that Transformer language models lead to improved recognition rates on both tasks. ASR systems obtained in this work can be seamlessly transfered to a streaming setup with minimal quality losses. Indeed, to the best of our knowledge, no better results have been reported on these tasks when assessed under a streaming setup.}, keywords = {hybrid ASR, language models, streaming, Transformer}, pubstate = {published}, tppubtype = {inproceedings} } Streaming ASR is gaining momentum due to its wide applicability, though it is still unclear how best to come close to the accuracy of state-of-the-art off-line ASR systems when the output must come within a short delay after the incoming audio stream. Following our previous work on streaming one-pass decoding with hybrid ASR systems and LSTM language models, in this work we report further improvements by replacing LSTMs with Transformer models. First, two key ideas are discussed so as to run these models fast during inference. Then, empirical results on LibriSpeech and TED-LIUM are provided showing that Transformer language models lead to improved recognition rates on both tasks. ASR systems obtained in this work can be seamlessly transfered to a streaming setup with minimal quality losses. Indeed, to the best of our knowledge, no better results have been reported on these tasks when assessed under a streaming setup. |
Iranzo-Sánchez, Javier; Giménez Pastor, Adrià ; Silvestre-Cerdà, Joan Albert; Baquero-Arnal, Pau; Saiz, Jorge Civera; Juan, Alfons Direct Segmentation Models for Streaming Speech Translation Inproceedings Proc. of 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), pp. 2599–2611, 2020. Abstract | Links | BibTeX | Tags: Segmentation, Speech Translation, streaming @inproceedings{Iranzo-Sánchez2020, title = {Direct Segmentation Models for Streaming Speech Translation}, author = {Javier Iranzo-Sánchez and Giménez Pastor, Adrià and Joan Albert Silvestre-Cerdà and Pau Baquero-Arnal and Jorge Civera Saiz and Alfons Juan}, url = {http://dx.doi.org/10.18653/v1/2020.emnlp-main.206}, year = {2020}, date = {2020-01-01}, booktitle = {Proc. of 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)}, pages = {2599--2611}, abstract = {The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. These systems are usually connected by a segmenter that splits the ASR output into, hopefully, semantically self-contained chunks to be fed into the MT system. This is especially challenging in the case of streaming ST, where latency requirements must also be taken into account. This work proposes novel segmentation models for streaming ST that incorporate not only textual, but also acoustic information to decide when the ASR output is split into a chunk. An extensive and thorough experimental setup is carried out on the Europarl-ST dataset to prove the contribution of acoustic information to the performance of the segmentation model in terms of BLEU score in a streaming ST scenario. Finally, comparative results with previous work also show the superiority of the segmentation models proposed in this work.}, keywords = {Segmentation, Speech Translation, streaming}, pubstate = {published}, tppubtype = {inproceedings} } The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. These systems are usually connected by a segmenter that splits the ASR output into, hopefully, semantically self-contained chunks to be fed into the MT system. This is especially challenging in the case of streaming ST, where latency requirements must also be taken into account. This work proposes novel segmentation models for streaming ST that incorporate not only textual, but also acoustic information to decide when the ASR output is split into a chunk. An extensive and thorough experimental setup is carried out on the Europarl-ST dataset to prove the contribution of acoustic information to the performance of the segmentation model in terms of BLEU score in a streaming ST scenario. Finally, comparative results with previous work also show the superiority of the segmentation models proposed in this work. |
Publications
2022 |
MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge: Extension Journal Article Applied Sciences, 12 (2), pp. 804, 2022. |
2021 |
MLLP-VRAIN Spanish ASR Systems for the Albayzin-RTVE 2020 Speech-To-Text Challenge Inproceedings Proc. of IberSPEECH 2021, pp. 118–122, Valladolid (Spain), 2021. |
Streaming cascade-based speech translation leveraged by a direct segmentation model Journal Article Neural Networks, 142 , pp. 303–315, 2021. |
2020 |
Improved Hybrid Streaming ASR with Transformer Language Models Inproceedings Proc. of 21st Annual Conf. of the Intl. Speech Communication Association (InterSpeech 2020), pp. 2127–2131, Shanghai (China), 2020. |
Direct Segmentation Models for Streaming Speech Translation Inproceedings Proc. of 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), pp. 2599–2611, 2020. |